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Matrix Algebra, Basics of2

Ayman Badawi3

Department of Mathematics, American4

University of Sharjah, Sharjah, UAE5

Synonyms6

Addition and subtraction of matrices; Augmented7

matrix; Consistent and inconsistent system;8

Cramer rule; Determinant of a matrix; Echelon9

form; Elementary matrix; Invertible (nonsin-10

gular) matrices; Multiplication of matrices;11

Symmetric and skew-symmetric matrices;12

Transpose of a matrix13

Glossary14

Matrix n � m A matrix is a block consisting of15

n row and m column. An entry in a matrix B16

located in the i th row and j th column of B is17

denoted by bij18

Consistent and Inconsistent System of Linear19

Equations A system of linear equations is20

said to be consistent if it has a solution, and21

it is called inconsistent if it has no solutions22

Augmented Matrix An augmented matrix of a23

system of linear equations written in matrix-24

form CX D B is a matrix of the form ŒC jB�,25

where C is the coefficient matrix of the system26

and B is the constant column of the system27

Transpose of a Matrix The transpose of a ma- 28

trix A is denoted by AT such that aT
ij D aj i 29

Symmetric Matrix and Skew-Symmetric 30

Matrix A square matrix A, n � n, is said 31

to be symmetric if AT D A, and it is called a 32

skew-symmetric if AT D �A 33

Identity Matrix In Let n � 2 be a positive 34

integer. Then B D In is the square matrix, 35

n � n, where bij D 1 if i D j and bij D 0 if 36

i 6D j If A is an n � m matrix, then AIm D A 37

and InA D A. 38

Elementary Matrix An elementary matrix is a 39

matrix which differs from the identity matrix 40

(In) by one single elementary row operation 41

Equivalent Matrices Two matrices are equiv- 42

alent if each is obtained from the other by 43

applying a sequence of row operations 44

Invertible (Nonsingular) Matrix A square ma- 45

trix A, n � n, is said to be invertible or nonsin- 46

gular if there exists a matrix n � n denoted by 47

A�1 such that AA�1 D A�1A D In 48

Determinant of a Matrix The determinant is a 49

value associated with a square matrix. It can 50

be computed from the entries of the matrix by 51

a specific arithmetic expression, while other 52

ways to determine its value exist as well. 53

Determinants occur throughout mathematics. 54

The use of determinants in calculus includes 55

the Jacobian determinant in the substitution 56

rule for integrals of functions of several vari- 57

ables. They are used to define the characteris- 58

tic polynomial of a matrix that is an essential 59

tool in eigenvalue problems in linear algebra 60

R. Alhajj, J. Rokne (eds.), Encyclopedia of Social Network Analysis and Mining, DOI 10.1007/978-1-4614-6170-8,
© Springer ScienceCBusiness Media New York 2014
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Cramer Rule Cramer’s rule is an explicit61

formula for the solution of a system of62

linear equations with as many equations as63

unknowns, valid whenever the system has64

a unique solution. It expresses the solution65

in terms of the determinants of the (square)66

coefficient matrix and of matrices obtained67

from it by replacing one column by the68

constant column of right hand sides of the69

equations. It is named after Gabriel Cramer70

(1704–1752)71

Definition72

In this entry, we describe all basic matrix oper-73

ations: Addition, subtraction, and multiplication.74

We show the importance of matrices in studying75

system of linear equations (augmented matrix76

and row operations). We show different meth-77

ods used in calculating determinant of a square78

matrix. We show the importance of determinant79

in solving system of linear equations (Cramer80

rule) and in finding the inverse of a matrix (Ad-81

joint method).82

Introduction83

Graphs are very useful ways of presenting84

information about social networks. However,85

when there are many actors and/or many kinds86

of relations, they can become so visually87

complicated that it is very difficult to see patterns.88

It is also possible to represent information89

about social networks in the form of matrices.90

Representing the information in this way also91

allows the application of mathematical and92

computer tools to summarize and find patterns.93

Social network analysts use matrices in a number94

of different ways. So, understanding a few95

basic things about matrices from mathematics96

is necessary. For example, the simplest and most97

common matrix is binary. That is, if a tie is98

present, a one is entered in a cell; if there is no99

tie, a zero is entered. This kind of a matrix is100

the starting point for almost all network analysis101

and is called an “adjacency matrix” because it102

represents who is next to or adjacent to whom in 103

the “social space” mapped by the relations that 104

we have measured. The following is an example 105

of a binary matrix: 106

2
4

0 1 1
0 0 1
0 1 0

3
5 107

Matrices and linear algebra are surely insepa- 108

rable subjects, and they are important “concepts” 109

needed in many aspects of real life science. 110

The subject of linear algebra can be partially 111

explained by the meaning of the two terms 112

comprising the title. We can understand “linear” 113

to mean anything that is “straight” or “flat”. For 114

example, in the xy-plane we are accustomed to 115

describing straight lines as the set of solutions 116

to an equation of the form y D mx C b, 117

where the slope m and the y-intercept b are 118

constants that together describe the line. Living 119

in three dimensions, with coordinates described 120

by triples (x; y; ´), they can be described as 121

the set of solutions to equations of the form 122

ax C by C c´ D d , where a; b; c; d are con- 123

stants that together determine the plane. While 124

we might describe planes as “flat”, lines in three 125

dimensions might be described as “straight”. 126

From a multivariate calculus course, we recall 127

that lines are sets of points described by equations 128

such as x D 3t � 4; y D �7t C 2; ´ D 9t , where 129

t is a parameter that can take on any value. 130

Another view of this notion of “flatness” is to 131

recognize that the sets of points just described are 132

solutions to equations of a relatively simple form. 133

These equations involve addition and multipli- 134

cation only. Here are some examples of typical 135

equations: 136

2x C 3y � 4´ D 134

x1 C 5x2 � x3 C x4 C x5 D 0

9a � 2b C 7c C 2d D �7

What we will not see in a linear algebra course 137

are equations like: 138

xy C 5y´ D 13 x1 C x3
2=x4 � x3x4x2

5 D 0
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cos.ab/ C log.c � d/ D �2

A system of linear equations in several un-139

knowns is naturally represented using the formal-140

ism of matrices.141

The word “algebra” is used frequently in142

mathematical preparation courses. Most likely,143

we have spent a good 10–15 years learning144

the algebra of the real numbers, along with145

some introduction to the very similar algebra146

of complex numbers. However, there are many147

new algebras to learn and use, and likely, linear148

algebra and matrix operations will be our second149

algebra. Like learning a second language, the150

necessary adjustments can be challenging at151

times, but the rewards are many. And it will152

make learning our third and fourth algebras153

even easier. Perhaps, “groups” and “rings” are154

excellent examples of other algebras with very155

interesting properties and applications.156

The brief discussion above about lines and157

planes suggests that linear algebra has an inher-158

ently geometric nature, and this is true. Examples159

in two and three dimensions can be used to160

provide valuable insight into important concepts161

of this subject.162

The material presented here can be found in163

every textbook on basic linear algebra. Since164

there are so many textbooks on basic linear165

algebra, and we cannot list all of them, we166

refer to a few books here. For example, Axler167

(1997), Bernstein (2005), Beezer (2004), Blyth168

and Robertson (2002), Kaw (2011), Lang (1986),169

Lay (2003), Robbiano (2011), and Shores (2007).170

System of Linear Equations171

Matrices play an important role in solving a172

system of linear equations as we will see later on173

in this section. Let R be the set of all real numbers174

and C be the set of all complex numbers. Then175

Rn D f.a1; a2; : : : ; an/ j a1; a2; : : : ; an 2 Rg176

and C n D f.a1; a2; : : : ; an/ j a1; a2; : : : ; an 2177

C g. An element of Rn (C n) is called a point.178

A system of linear equations is a collection of179

m equations with n variable x1; x2; x3; : : : ; xn of180

the form181

a11x1 C a12x2 C a13x3 C : : : C a1nxn D b1

a21x1 C a22x2 C a23x3 C : : : C a2nxn D b2

a31x1 C a32x2 C a33x3 C : : : C a3nxn D b3

::: (1)

am1x1 C am2x2 C am3x3 C : : : C amnxn D bm

where aij ; bj 2 R (2 C ). 182

A point .a1; : : : ; an/ 2 Rn (2 C n) is said 183

to be a solution to a system of linear equations 184

with n variables, x1; x2; x3; : : : ; xn as in (1) if 185

we substitute a1 for x1, a2 for x2, a3 for x3, . . . , 186

an for xn; then, for every equation of the system 187

the left side will equal the right side, i.e., each 188

equation is true simultaneously. 189

Let F be a set. Then jF j denotes the cardinal- 190

ity of the set F , i.e., the number of the elements 191

in F . 192

Theorem 1 Let F � Rn(� C n) be the set of all 193

solutions to a system of linear equations with n 194

variables. Then either jF j D 1 (i.e., the system 195

has unique solution) or F is an empty set (i.e., 196

the system has no solution) or jF j D 1 (i.e., the 197

system has infinitely many solutions). 198

Example 1 F D f.2; 1/g is the set of all solu- 199

tions to the system 2x1 C x2 D 5, x1 C 2x2 D 4 200

(i.e., x1 D 2; x2 D 1, and hence, the solution is 201

unique). 202

F D f.a1; 2a1 C 3/ j a1 2 Rg is the set 203

of all solutions to the system �2x1 C x2 D 3, 204

�4x1 C 2x2 D 6 (i.e., the system has infinitely 205

many solutions). 206

The system x1 C 2x2 D 0; 2x1 C 4x2 D 1 has no 207

solutions. 208

A system of linear equations is called consistent 209

if it has a solution, and it is called inconsistent if 210

it has no solutions. A system of linear equations 211

as in (1) is called homogeneous if b1 D b2 D 212

� � � D bm D 0. 213

Theorem 2 Every homogeneous system of linear 214

equations is consistent (i.e., (0, 0, . . . , 0) is always 215

a solution of such system). If a system of linear 216

equations is consistent and it has more variables 217

than equations, then the system has infinitely 218
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many solutions. In particular, if a homogenous219

system has more variables than equations, then220

it has infinitely many solutions.221

Two systems of linear equations are equivalent if222

their solution sets are equal.223

Theorem 3 If we apply one or two or all of224

the following equation operations to a system of225

linear equations as many times as we want, then226

the original system and the transformed system227

are equivalent.228

1. Swap the locations of two equations in the list229

of equations.230

2. Multiply each term of an equation by a231

nonzero quantity.232

3. Multiply each term of one equation by some233

quantity and add these terms to a second234

equation, on both sides of the equality. Leave235

the first equation the same after this operation236

but replace the second equation by the new237

one.238

In light of Theorem 3, one can view each equation239

of a system of linear equations as a row of a240

matrix and each equation operation in Theorem 3241

as a row operation on a matrix. Hence, we have242

the following well-known row operations.243

Let A be an m � n matrix (i.e., A has m rows244

and n columns). Then each of the following is245

called a row operation on A.246

1. Swap the locations of two rows.247

2. Multiply each entry of a single row by a248

nonzero quantity.249

3. Multiply each entry of one row by some quan-250

tity and add these values to the entries in the251

same columns of a second row. Leave the first252

row the same after this operation but replace253

the second row by the new values.254

We will use the following notations to describe255

the row operations stated above:256

1. Ri $ Rj : Swap the location of rows i and j .257

2. ˛Ri : Multiply row i by the nonzero scalar ˛.258

3. ˛Ri CRj ! Rj : Multiply row i by the scalar259

˛ and add to row j , so that row j will change260

but no change in row i .261

Two matrices, A; B , of the same size , say m � n,262

are said to be row-equivalent if and only if A is263

obtained from B by applying a sequence of row264

operations on B .265

The following type of matrices is needed in 266

order to achieve our main goal and solve a system 267

of linear equations using augmented matrices. 268

A matrix A, m � n, is called in reduced row- 269

echelon form if it meets all of the following 270

conditions: 271

1. If there is a row where every entry is zero, then 272

this row lies below any other row that contains 273

a nonzero entry. 274

2. The leftmost nonzero entry of a row is equal 275

to 1. 276

3. The leftmost nonzero entry of a row is the only 277

nonzero entry in its column. 278

4. Consider any two different leftmost nonzero 279

entries, one located in row i , column j and 280

the other located in row s, column t . If s > i , 281

then t > j . 282

A matrix A, m � n, is said to be in row-echelon 283

form if and only if A satisfies conditions (1), (2), 284

and (4) as above. 285

Example 2 The matrix A D
2
4

0 1 3 0 0
0 0 0 1 0
0 0 0 0 1

3
5 is in 286

reduced row-echelon form. 287

The matrix A D
2
4

1 1 1 1
0 0 1 4
0 0 0 1

3
5 is in row-echelon 288

form but not in reduced row-echelon form. 289

The matrix A D
�

0 1
1 0

�
is neither in row-echelon 290

form nor in reduced row-echelon form. 291

Theorem 4 Let A be a matrix, m � n. Then A 292

is row-equivalent to a unique matrix, m � n, in 293

reduced row-echelon form. 294

Consider the system in (1). The augmented
matrix of the system is

2
6664

a11 a12 � � � a1n jb1

a21 a22 � � � a2n jb2
:::

::: � � � :::
:::

am1 am2 � � � amn jbm

3
7775

where a1i ; a2i ; : : : ; ami are the coefficients of 295

the variable xi in the system (1). In view of 296

Theorem 3, we have the following result. 297
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Theorem 5 Let A be the augmented matrix of a298

given system of linear equations and let E be the299

reduced row-echelon form of A. Then the solution300

set of the given system is equal to the solution set301

of the system that has E as its augmented matrix.302

Theorem 6 Let A be the augmented matrix of a303

given system of linear equations and let E be the304

reduced row-echelon form of A. Then the given305

system is consistent if and only if none of the306

equations that correspond to the matrix E has a307

form zero = nonzero.308

Suppose A is the augmented matrix of a consis-309

tent system of linear equations and let E be the310

reduced row-echelon form of A. Suppose j is the311

index of a column of B that contains the leading312

1 for some row. Then the variable xj is said to313

be dependent or leading. A variable that is not314

dependent is called independent or free. If xk is315

an independent variable, we understand that xk316

can take any real (complex) value.317

Consider the following system:318

x1 C 2x2 � x3 C 2x4 D 1319

320

�2x1 � 4x2 C 3x3 � 4x4 D 2321
322

�x1 � 2x2 C x3 � 2x4 D �1323

Whose augmented matrix is equivalent to the324

matrix325

E D
2
4

1 2 0 2 j5
0 0 1 0 j4
0 0 0 0 j0

3
5326

in reduced row-echelon form, which corresponds327

to the system:328

x1 C 2x2 C 2x4 D 5

x3 D 4

0 D 0

No equation of this system has a form zero =329

nonzero. Therefore, the original system is con-330

sistent. The dependent (leading) variables are x1331

and x3. The independent (free) variables are x2332

and x4. Thus, x2; x4 can take any real (complex)333

values. We write the leading variables in terms of334

the dependent variables. Thus, we have:335

x1 D 5 � 2x2 � 2x4

x3 D 4

x2; x4 2 R.C /

Hence, the solution set of the original sys- 336

tem is 337

F Df.5 � 2x2 � 2x4; x2; 4; x4/jx2; x4 2 R.C /g: 338

Matrix Operations 339

Let Mn�m be the set of all n � m matrices with 340

entries from R (C ) for some positive integers 341

n; m. If A 2 Mn�m, then aij denotes the entry 342

in the matrix A that is located in the i th row and 343

the j th column of A. If A 2 Mn�m, then we say 344

that si´e.A/ D n � m. 345

Theorem 7 (Addition, subtraction, and multi- 346

plication by a scalar) Let A; B be two matrices 347

and ˛ 2 R.C /. Then ACB and A�B is defined 348

if and only if size(A) = size(B). Furthermore, 349

suppose that size(A) = size(B), A C B D C , 350

A � B D D, and ˛A D F . Then cij D aij C bij , 351

dij D aij � bij , and fij D ˛aij . 352

Example 3 Let A D
�

3 4 1
�1 0 2

�
, B D 353

��2 0 1
4 �2 1

�
, and ˛ D �2. Then A C B D 354

C D
�

1 4 2
3 �2 3

�
, A � B D D D

�
5 4 0

�5 2 1

�
, 355

and �2A D
��6 �8 �2

2 0 �4

�
. 356

For a matrix A 2 Mn�m, let Ari
denote the i th 357

row of A and let Aci
denote the i th column of A. 358

Theorem 8 (Matrix multiplication) Let A be 359

an m�n matrix and B be a v�k matrix. Then the 360

matrix multiplication AB is defined if and only if 361

n D v. Furthermore, suppose that n D v and let 362

AB D D. Then the following statements hold: 363

1. Size(D) = m�k and dij D ai;1b1;j Cai;2b2;j C 364

� � � C ai;nbn;j [dot product]. 365

2. Dci
D b1i Ac1 Cb2i Ac2 C� � �Cbni Acn

[linear 366

combination of the columns of A]. 367
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3. Dri
D ai1Br1 Cai2Br2 C� � �CainBrn

[linear368

combination of the rows of B].369

Example 4 Let A D
�

1 2 5
�3 0 6

�
and B D370

2
4

1 �2 3
0 5 2

�3 7 �4

3
5. Then AB is defined by371

Theorem 8. Let AB D D. Then372

1. Size(D) = 2�3 and d23 D .�3/.3/C.0/.2/C373

.6/.�4/.374

2. The second column of D is Dc2 D �2

�
1

�3

�
C375

5

�
2
0

�
C 7

�
5
6

�
.376

3. The second row of D is Dr2 D �3Œ1 �2 3�C377

0Œ0 5 2� C 6Œ�3 7 � 4�.378

Note that BA is undefined by Theorem 8. In fact,379

it is possible that for some matrices A; B that AB380

and BA are defined but AB 6D BA.381

Theorem 9 Let i be a positive integer and A be382

a matrix. Then Ai D A � A � � � � � A (i times)383

is defined if and only if A is a square matrix, i.e.,384

A 2 Mn�n for some positive integer n.385

Theorem 10 1. Let ˛; ˇ 2 R.C /, A; B 2386

Mn�m and let C 2 Mm�k . Then .˛A C387

ˇB/C D ˛AC C ˇBC .388

2. Let ˛; ˇ 2 R.C /, A; B 2 Mn�m and let C 2389

Mk�n. Then C.˛A C ˇB/C D ˛CA C ˇCB .390

3. Let A 2 Mn�m, B 2 Mm�k , and C 2 Mk�i .391

Then ABC D .AB/C D A.BC /.392

Theorem 11 (Matrix-form of a system of lin-393

ear equations) Consider the system in (1). Let394

C D

2
6664

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

:::
:::

am1 am2 � � � amn

3
7775, X D

2
6664

x1

x2
:::

xn

3
7775, and395

B D

2
6664

b1

b2
:::

bm

3
7775. Then (in view of Theorem 8(2)), the396

matrix-form of the system in (1) is CX D B ,397

where C is called the coefficient matrix of the398

system, X is called the variables-column of the399

system, and B is called the constant column of400

the system.401

Theorem 12 Let CX D B be the matrix-form of 402

a given system of linear equations with m equa- 403

tions and n variables (hence, size(C) = m � n, 404

size(X) = n � 1, and size(B) = m � 1). Then the 405

given system is consistent if and only if there are 406

some real (complex) numbers, r1; r2; : : : ; rn, such 407

that B D r1Cc1 C r2Cc2 C � � � C rnCcn
, i.e., B is 408

a linear combination of the columns of C . 409

Example 5 Consider the system: 410

x1 C 2x3 � x3 D �1 411

412

3x1 C 5x2 C 2x3 D 7 413
414

�x1 C 2x2 � 6x3 D �13 415

Then C D
2
4

1 2 �1
3 5 2

�1 2 �6

3
5 is the coefficient 416

matrix, X D
2
4

x1

x2

x3

3
5 is the variables-column, and 417

B D
2
4

�1
7

�13

3
5 is the constant column. Thus, the 418

matrix-form of the system is CX D B . 419

Since B D 1

2
4

1
3

�1

3
5 C 0

2
4

2
5
2

3
5 C 2

2
4

�1
2

�6

3
5 420

is a linear combination of the columns of C , 421

we conclude that the system is consistent by 422

Theorem 12, and the point (1, 0, 2) is in the 423

solution set of the system (i.e., x1 D 1; x2 D 0; 424

x3 D 2 is a solution to the system). 425

Let n � 1 be a positive integer. Then In is an 426

n � n matrix where i11 D i22 D � � � D inn D 1 427

and ikj D 0 if k 6D j . We call In an identity 428

matrix. Note that if n D 1, then In D 1. 429

Theorem 13 Let A be a k � m matrix. Then 430

AIm D A and IkA D A. 431

Theorem 14 (Row operations and matrix mul- 432

tiplication) Let A be an n � m matrix and let 433

W be a row operation. Assume that we applied 434

W exactly once on A and we obtained the matrix 435

B , also assume we applied W on the matrix In 436

exactly once and we obtained the matrix E . Then 437

EA D B . 438
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A matrix that is obtained from In by applying439

one row operation on In exactly once is called440

an elementary matrix.441

Example 6 Let A be a 2 � 5 matrix and assume442

we applied a sequence of row operations on A,443

and we obtained the matrix B as below:444

A R1 $ R2 A1 2R2 C R1 ! R1 A2 3R1 B:

Since we performed exactly three row445

operations on A, we should be able to find446

three elementary matrices, E1; E2; E3, such that447

E3E2E1A D B .448

I2 R1 $ R2 E1 D
�

0 1
1 0

�
D E1449

450

I2 2R2 C R1 ! R1 E2 D
�

1 2
0 1

�
451

452

I2 3R1 E3 D
�

3 0
0 1

�
453

Hence, E3E2E1A D B .454

Let A be a square matrix (i.e., A 2 Mn�n).455

We say A is nonsingular or invertible if there456

exists a matrix denoted by A�1 such that AA�1 D457

A�1A D In. If we cannot find a matrix B such458

that AB D BA D In, then we say A is singular459

or non-invertible.460

Theorem 15 Let A 2 Mn�n and suppose that A461

is invertible. Then A�1 is unique. Furthermore,462

suppose that BA D In for some matrix B . Then463

BA D AB D In, and hence B D A�1.464

Theorem 16 Let A 2 Mn�n and suppose that B465

is the reduced row echelon form of A. Then A is466

invertible if and only if B D In.467

Theorem 17 (Calculating A�1) Let A 2 Mn�m468

and suppose that we joint In to the matrix A,469

and we formed a new matrix denoted by ŒAjIn�.470

Then471

1. Suppose that we applied a sequence of472

row operations on the matrix ŒAjIn�, and473

we obtained the matrix ŒDjF � (i.e., A is474

row-equivalent to D and In is row-equivalent 475

to F ). Then FA D D. 476

2. Suppose A is a square matrix (i.e., n = m), and 477

we applied a sequence of row operations on 478

the matrix ŒAjIn�, and we obtained the matrix 479

ŒDjF � where D is the reduced row-echelon 480

form of A. If D D In, then F D A�1. 481

Example 7 Let A D
�

4 3
1 1

�
. We use 482

Theorem 29(2) in order to find A�1. We form 483

the matrix ŒAjI2� and we apply a sequence of 484

row operations on the matrix ŒAjI2� in order 485

to obtain the matrix ŒDjF � where D is the 486

reduced row operation form of A. We see that 487

D D I2 and F D
�

1 �3
�1 4

�
. Thus, F D A�1 by 488

Theorem 29(2). 489

Theorem 18 1. Let A; B 2 Mn�n be invertible 490

matrices. Then AB is invertible and 491

.AB/�1 D B�1A�1. 492

2. Let A 2 Mn�n be invertible and ˛ 2 R.C / 493

such that ˛ 6D 0. Then ˛A is invertible and 494

.˛A/�1 D 1
˛

A�1. 495

Theorem 19 Let CX D B be the matrix-form 496

of a given system of linear equations with n 497

equations and n variables. Then the system has 498

a unique solution if and only if C is invertible. 499

Furthermore, if C �1 is the inverse of C , then 500

X D C �1B . 501

Example 8 Consider the following system in 502

matrix-form CX D B , where C D
�

4 3
1 1

�
, 503

X D
�
x1

x2

�
, and B D

�
2
1

�
. Since C is invertible 504

by Example 7, we have X D
�
x1

x2

�
D C �1B D 505

�
1 �3

�1 4

� �
2
1

�
D

��1
2

�
. Thus, f.�1; 2/g is the 506

solution set of the system. 507

Let A be an n � m matrix. The transpose of A 508

is denoted by AT where aT
ij D aj i , and hence 509

si´e.AT / D m � n. 510

A square matrix A, n� n, is called symmetric 511

if AT D A, and it is called skew-symmetric if 512

AT D �A. 513
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Theorem 20 1. Assume that A; B 2 Mn�m and514

˛; ˇ 2 R.C /. Then .˛A C ˇB/T D ˛AT C515

ˇBT .516

2. Assume that AB is defined for some matrices517

A; B . Then .AB/T D BT AT .518

3. Assume A is a square matrix and ˛ 2 R.C /.519

Then ˛.ACAT / is symmetric and ˛.A�AT /520

is skew-symmetric.521

4. Assume A is a square matrix, then A D522

1
2 .A C AT / C 1

2 .A � AT /, i.e., A is a sum523

of a symmetric matrix and a skew-symmetric524

matrix.525

Theorem 21 Let A 2 Mn�n. Then A is invert-526

ible if and only if AT is invertible. Furthermore,527

if A is invertible, then .AT /�1 D .A�1/T .528

Determinant and Cramer Rule529

Let A 2 Mn�n (n � 2). Then Aij denotes the530

matrix obtained from A after deleting the i th row531

and the j th column of A. Some authors called532

such matrix a minor of A. Note that si´e.Aij / D533

.n � 1/ � .n � 1/. If B is a square matrix, then534

det.B/ or jBj denotes the determinant of B .535

Theorem 22 Let A be a 2 � 2 matrix, say A D536 �
a11 a12

a21 a22

�
. Then det.A/ D a11a22 � a12a21.537

Theorem 23 (Calculating det.A/) Let A 2538

Mn�n. Then539

1. Assume that we selected the i th row of A. Then540

det.A/ D .�1/iC1ai1det.Ai1/

C.�1/iC2ai2det.Ai2/

C � � � C .�1/iCnaindet.Ain/

2. Assume that we selected the j th column of A.541

Then542

det.A/ D .�1/j C1a1j det.A1j /

C.�1/j C2a2j det.A2j /

C � � � C .�1/j Cnanj det.Anj /

3. det.A/ is unique and it does not rely on the 543

row or the column we select, and thus, it is 544

always recommended that we select a row or 545

a column of A that has more zeros in order to 546

calculate det.A/. 547

Example 9 Let A D
2
4

2 4 3
�4 5 0
3 2 0

3
5. To find det.A/, 548

we observe that the 3rd column of A has more 549

zeros. Hence, by Theorem 23(2) , we have 550

det.A/ D .�1/3C13det

��4 5
3 2

�
D �69 551

Let A 2 Mn�n. If aij D 0 whenever i > j , 552

then A is called an upper triangular matrix. If 553

aij D 0 whenever i < j , then A is called a lower 554

triangular matrix. If aij D 0 whenever i 6D j , 555

then A is called a diagonal matrix. If A is upper 556

triangular or lower triangular or diagonal, then A 557

is said to be a triangular matrix. 558

Theorem 24 Let A 2 Mn�n be a triangular 559

matrix. Then det.A/ D a11a22: � � � :an�1n�1ann. 560

Theorem 25 1. Let A 2 Mn�n be an invertible 561

upper triangular matrix. Then A�1 is an upper 562

triangular matrix. 563

2. Let A 2 Mn�n be an invertible lower trian- 564

gular matrix. Then A�1 is a lower triangular 565

matrix. 566

3. Let A 2 Mn�n be an invertible diagonal 567

matrix. Then A�1 is a diagonal matrix. 568

Theorem 26 Let A 2 Mn�n. If one of the 569

following statements hold, then det.A/ D 0. 570

1. Two rows or two columns of A are identical. 571

2. One row of A is a multiple of another row of 572

A, or one column of A is a multiple of another 573

column of A. 574

3. One row or one column of A is entirely zeros. 575

Theorem 27 (The effect of row operations on 576

determinant) Let A 2 Mn�n. Then, 577

1. Suppose that we applied row operation num- 578

ber one exactly once on A: A Ri $ Rj B . 579

Then det.B/ D �det.A/. 580
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2. Suppose that we applied row operation num-581

ber two exactly once on A: A ˛Ri B . Then582

det.B/ D ˛det.A/.583

3. Suppose that we applied row opera-584

tion number three exactly once on A:585

A ˛Ri C Rj ! Rj B . Then det.B/ D586

det.A/.587

Theorem 28 (Most used method to find a de-588

terminant) Let A 2 Mn�n. It is always recom-589

mended that we apply row operations on A in590

order to transform A to a triangular matrix, then 591

we use Theorem 27 and Theorem 24 to calculate 592

det.A/. 593

Example 10 Let A D

2
664

2 1 2 1
�2 1 2 6
4 2 5 1

�2 �1 �2 3

3
775. We use 594

Theorem 28 in order to calculate det.A/. 595

A R1 C R2 ! R2; �2R1 C R3 ! R3; R1 C R4 ! R4 B D

2
664

2 1 2 1
0 2 4 7
0 0 1 �1
0 0 0 2

3
775

Since B is obtained from A by applying row596

operation number three exactly three times on A597

and row operation number three has no effect on598

det.A/, we conclude that det.A/ D det.B/ by599

Theorem 27(3). Hence, det.A/ D det.B/ D 8600

by Theorem 24.601

Example 11 Let A 2 M4�4 and suppose that602

A R1 $ R2 B 2R3 C D

2
664

2 2 2 2
0 1 1 �4
0 0 2 3
0 0 0 4

3
775. By603

Theorem 24, det.C / D 16. By Theorem 27(1),604

16 D det.C / D 2det.B/, and hence605

det.B/ D 8. By Theorem 27(2), 8 D det.B/ D606

�det.A/, and hence det.A/ D �8.607

Theorem 29 (Characterizing invertible matri-608

ces in terms of determinant) Let A 2 Mn�n.609

Then A is invertible (nonsingular) if and only if610

det.A/ 6D 0.611

Theorem 30 (Characterizing consistent and612

inconsistent systems of linear equations in613

terms of determinant) Let CX D B be the614

matrix-form of a system of linear equations with615

n equations and n variables (i.e., si´e.C / D616

n � n). Then:617

1. The system has a unique solution if and only if618

det.C / 6D 0.619

2. Assume that the given system is consistent. 620

Then the system has infinitely many solutions 621

if and only if det.C / D 0. 622

Theorem 31 1. Let A; B 2 Mn�n. Then 623

det.AB/ D det.A/det.B/, and it is not 624

always true that det.A C B/ D det.A/ C 625

det.B/. 626

2. Let A 2 Mn�n. Then det.AT / D det.A/. 627

3. Let A 2 Mn�n be an invertible matrix. Then 628

det.A�1/ D 1
det.A/

. 629

4. Let A 2 Mn�n and ˛ 2 R.C /. Then 630

det.˛A/ D ˛ndet.A/. 631

Theorem 32 (Adjoint method: calculating A�1
632

using determinant) Let A 2 Mn�n be an invert- 633

ible matrix. Then the (i, j)-entry of A�1 D 634

a�1
ij D .�1/iCj det.Aj i /

det.A/
635

(Recall: Aj i is the matrix obtained from A after 636

deleting the j th row and i th column of A.) 637

Example 12 Let A D
2
4

3 2 1
0 2 3
0 0 1

3
5. Then det.A/ D 638

a11a22a33 D .3/.2/.1/ D 6 by Theorem 24. 639

Hence, A is invertible by Theorem 29. Thus, 640

the (2, 3)-entry of A�1 = a�1
23 D .�1/5det.A32/

det.A/
641
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by Theorem 32. Now, A32 D
�

3 1
0 3

�
and642

det.A32/ D 9. Thus, a�1
23 D �9

6 D �3
2 .643

Let CX D B be the matrix-form of a system644

of linear equations with n equations and n vari-645

ables, say x1; x2; : : : ; xn. Then Ci indicates the646

matrix obtained from C after replacing the i th647

column of C by the constant column B .648

Theorem 33 (Cramer rule: solving n � n sys-649

tem of linear equations) Let CX D B be the650

matrix-form of a system of linear equations with651

n equations and n variables, say x1; x2; : : : ; xn652

and suppose that det.C / 6D 0 (and hence, the653

system has a unique solution by Theorem 30 ).654

Then xi D det.Ci /

det.C /
.655

Example 13 Consider the system in the matrix-656

form CX D B , where C D
2
4

1 2 1
�1 1 2
�2 �4 2

3
5 ; X D657

2
4

x1

x2

x3

3
5, and B D

2
4

1
2

�2

3
5. Then det.C / D 12,658

C1 D
2
4

1 2 1
2 1 2

�2 �4 2

3
5 ; C2 D

2
4

1 1 1
�1 2 2
�2 �2 2

3
5 ; C3 D659

2
4

1 2 1
�1 1 2
�2 �4 �2

3
5. Thus, by Theorem 33 we have:660

x1 D det.C1/=det.C / D �12=12 D 1; x2 D661

det.C2/=det.C / D 12=12 D 1, and x3 D662

det.C3/=det.C / D 0=12 D 0.663

Conclusions664

In this entry, we explicitly explained and stated665

all major results on basic matrix operations. We666

illustrated all different methods used in solv-667

ing system of linear equations using matrices.668

The concept of elementary matrices and their669

strong relation with row operations is explained670

in details. Major results on determinant and its671

use are illustrated clearly in this article.672
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