Metadata of the chapter that will be visualized online

Book Title	Encyclopedia of Social Network Analysis and Mining	
Book Copyright Year	2014	
Copyright Holder	Springer Science+Business Media New York	
Title	Matrix Algebra, Basics of	
Author	Degree	Ayman
	Given Name	
	Particle	Badawi
	Family Name	
	Suffix	
	Phone	
	Fax	abadawi@aus.edu
	Email	Department of Mathematics
	Division	American University of Sharjah
	Organization	Box 26666
	Street	Sharjah
	City	UAE
	Country	

Matrix Algebra, Basics of

Ayman Badawi
4 Department of Mathematics, American
University of Sharjah, Sharjah, UAE

Synonyms

7 Addition and subtraction of matrices; Augmented matrix; Consistent and inconsistent system; Cramer rule; Determinant of a matrix; Echelon form; Elementary matrix; Invertible (nonsingular) matrices; Multiplication of matrices; Symmetric and skew-symmetric matrices; Transpose of a matrix

Glossary

Matrix $\boldsymbol{n} \times \boldsymbol{m}$ A matrix is a block consisting of n row and m column. An entry in a matrix B located in the i th row and j th column of B is denoted by $b_{i j}$

Consistent and Inconsistent System of Linear

 Equations A system of linear equations is said to be consistent if it has a solution, and it is called inconsistent if it has no solutionsAugmented Matrix An augmented matrix of a system of linear equations written in matrixform $C X=B$ is a matrix of the form $[C \mid B]$, where C is the coefficient matrix of the system and B is the constant column of the system

Transpose of a Matrix The transpose of a ma- 28 trix A is denoted by A^{T} such that $a_{i j}^{T}=a_{j i} \quad 29$
Symmetric Matrix and Skew-Symmetric 30 Matrix A square matrix $A, n \times n$, is said 31 to be symmetric if $A^{T}=A$, and it is called a 32 skew-symmetric if $A^{T}=-A \quad 33$
Identity Matrix I_{n} Let $n \geq 2$ be a positive ${ }_{34}$ integer. Then $B=I_{n}$ is the square matrix, 35 $n \times n$, where $b_{i j}=1$ if $i=j$ and $b_{i j}=0$ if ${ }_{36}$ $i \neq j$ If A is an $n \times m$ matrix, then $A I_{m}=A{ }_{37}$ and $I_{n} A=A$.
Elementary Matrix An elementary matrix is a 39 matrix which differs from the identity matrix 40 $\left(I_{n}\right)$ by one single elementary row operation 41
Equivalent Matrices Two matrices are equiv- 42 alent if each is obtained from the other by 43 applying a sequence of row operations 44
Invertible (Nonsingular) Matrix A square ma- ${ }^{45}$ $\operatorname{trix} A, n \times n$, is said to be invertible or nonsin- ${ }_{46}$ gular if there exists a matrix $n \times n$ denoted by 47 A^{-1} such that $A A^{-1}=A^{-1} A=I_{n}$
Determinant of a Matrix The determinant is a 49 value associated with a square matrix. It can 50 be computed from the entries of the matrix by 51 a specific arithmetic expression, while other 52 ways to determine its value exist as well. 53 Determinants occur throughout mathematics. 54 The use of determinants in calculus includes 55 the Jacobian determinant in the substitution 56 rule for integrals of functions of several vari- 57 ables. They are used to define the characteris- 58 tic polynomial of a matrix that is an essential 59 tool in eigenvalue problems in linear algebra 60

Cramer Rule Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the constant column of right hand sides of the equations. It is named after Gabriel Cramer (1704-1752)

Definition

In this entry, we describe all basic matrix operations: Addition, subtraction, and multiplication. We show the importance of matrices in studying system of linear equations (augmented matrix and row operations). We show different methods used in calculating determinant of a square matrix. We show the importance of determinant in solving system of linear equations (Cramer rule) and in finding the inverse of a matrix (Adjoint method).

Introduction

Graphs are very useful ways of presenting information about social networks. However, when there are many actors and/or many kinds of relations, they can become so visually complicated that it is very difficult to see patterns. It is also possible to represent information about social networks in the form of matrices. Representing the information in this way also allows the application of mathematical and computer tools to summarize and find patterns. Social network analysts use matrices in a number of different ways. So, understanding a few basic things about matrices from mathematics is necessary. For example, the simplest and most common matrix is binary. That is, if a tie is present, a one is entered in a cell; if there is no tie, a zero is entered. This kind of a matrix is the starting point for almost all network analysis and is called an "adjacency matrix" because it
represents who is next to or adjacent to whom in 103 the "social space" mapped by the relations that 104 we have measured. The following is an example 105 of a binary matrix:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Matrices and linear algebra are surely insepa- 108 rable subjects, and they are important "concepts" 109 needed in many aspects of real life science. 110 The subject of linear algebra can be partially 111 explained by the meaning of the two terms 112 comprising the title. We can understand "linear" 113 to mean anything that is "straight" or "flat". For 114 example, in the $x y$-plane we are accustomed to 115 describing straight lines as the set of solutions 116 to an equation of the form $y=m x+b, 117$ where the slope m and the y-intercept b are 118 constants that together describe the line. Living 119 in three dimensions, with coordinates described 120 by triples (x, y, z), they can be described as 121 the set of solutions to equations of the form 122 $a x+b y+c z=d$, where a, b, c, d are con- 123 stants that together determine the plane. While 124 we might describe planes as "flat", lines in three 125 dimensions might be described as "straight". 126 From a multivariate calculus course, we recall 127 that lines are sets of points described by equations 128 such as $x=3 t-4, y=-7 t+2, z=9 t$, where ${ }_{129}$ t is a parameter that can take on any value. 130

Another view of this notion of "flatness" is to 131 recognize that the sets of points just described are 132 solutions to equations of a relatively simple form. 133 These equations involve addition and multipli- 134 cation only. Here are some examples of typical 135 equations:

$$
\begin{aligned}
& 2 x+3 y-4 z=134 \\
& x_{1}+5 x_{2}-x_{3}+x_{4}+x_{5}=0 \\
& 9 a-2 b+7 c+2 d=-7
\end{aligned}
$$

What we will not see in a linear algebra course ${ }^{137}$ are equations like:

$$
x y+5 y z=13 x_{1}+x_{2}^{3} / x_{4}-x_{3} x_{4} x_{5}^{2}=0
$$

$$
\cos (a b)+\log (c-d)=-2
$$

A system of linear equations in several unknowns is naturally represented using the formalism of matrices.

The word "algebra" is used frequently in mathematical preparation courses. Most likely, we have spent a good $10-15$ years learning the algebra of the real numbers, along with some introduction to the very similar algebra of complex numbers. However, there are many new algebras to learn and use, and likely, linear algebra and matrix operations will be our second algebra. Like learning a second language, the necessary adjustments can be challenging at times, but the rewards are many. And it will make learning our third and fourth algebras even easier. Perhaps, "groups" and "rings" are excellent examples of other algebras with very interesting properties and applications.

The brief discussion above about lines and planes suggests that linear algebra has an inherently geometric nature, and this is true. Examples in two and three dimensions can be used to provide valuable insight into important concepts of this subject.

The material presented here can be found in every textbook on basic linear algebra. Since there are so many textbooks on basic linear algebra, and we cannot list all of them, we refer to a few books here. For example, Axler (1997), Bernstein (2005), Beezer (2004), Blyth and Robertson (2002), Kaw (2011), Lang (1986), Lay (2003), Robbiano (2011), and Shores (2007).

System of Linear Equations

Matrices play an important role in solving a system of linear equations as we will see later on in this section. Let R be the set of all real numbers and C be the set of all complex numbers. Then $R^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in R\right\}$ and $C^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in\right.$ $C\}$. An element of $R^{n}\left(C^{n}\right)$ is called a point.

A system of linear equations is a collection of m equations with n variable $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots+a_{3 n} x_{n}=b_{3}
\end{aligned}
$$

$$
\begin{equation*}
\vdots \tag{1}
\end{equation*}
$$

$a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n}=b_{m}$
where $a_{i j}, b_{j} \in R(\in C)$. 182
A point $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}\left(\in C^{n}\right)$ is said 183 to be a solution to a system of linear equations 184 with n variables, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ as in (1) if 185 we substitute a_{1} for x_{1}, a_{2} for x_{2}, a_{3} for $x_{3}, \ldots, 186$ a_{n} for x_{n}; then, for every equation of the system 187 the left side will equal the right side, i.e., each 188 equation is true simultaneously.

Let F be a set. Then $|F|$ denotes the cardinal- 190 ity of the set F, i.e., the number of the elements 191 in F. 192

Theorem 1 Let $F \subseteq R^{n}\left(\subseteq C^{n}\right)$ be the set of all 193 solutions to a system of linear equations with $n 194$ variables. Then either $|F|=1$ (i.e., the system 195 has unique solution) or F is an empty set (i.e., 196 the system has no solution) or $|F|=\infty$ (i.e., the 197 system has infinitely many solutions).

Example $1 F=\{(2,1)\}$ is the set of all solu- 199 tions to the system $2 x_{1}+x_{2}=5, x_{1}+2 x_{2}=4200$ (i.e., $x_{1}=2, x_{2}=1$, and hence, the solution is 201 unique).

202
$F=\left\{\left(a_{1}, 2 a_{1}+3\right) \mid a_{1} \in R\right\}$ is the set 203 of all solutions to the system $-2 x_{1}+x_{2}=3,204$ $-4 x_{1}+2 x_{2}=6$ (i.e., the system has infinitely 205 many solutions).
The system $x_{1}+2 x_{2}=0,2 x_{1}+4 x_{2}=1$ has no 207 solutions.

A system of linear equations is called consistent 209 if it has a solution, and it is called inconsistent if 210 it has no solutions. A system of linear equations 211 as in (1) is called homogeneous if $b_{1}=b_{2}=212$ $\cdots=b_{m}=0$. 213

Theorem 2 Everyhomogeneous system of linear 214 equations is consistent (i.e., $(0,0, \ldots, 0)$ is always 215 a solution of such system). If a system of linear 216 equations is consistent and it has more variables 217 than equations, then the system has infinitely 218
many solutions. In particular, if a homogenous system has more variables than equations, then it has infinitely many solutions.

Two systems of linear equations are equivalent if their solution sets are equal.

Theorem 3 If we apply one or two or all of the following equation operations to a system of linear equations as many times as we want, then the original system and the transformed system are equivalent.

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero quantity.
3. Multiply each term of one equation by some quantity and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation but replace the second equation by the new one.

In light of Theorem 3, one can view each equation of a system of linear equations as a row of a matrix and each equation operation in Theorem 3 as a row operation on a matrix. Hence, we have the following well-known row operations.

Let A be an $m \times n$ matrix (i.e., A has m rows and n columns). Then each of the following is called a row operation on A.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.
3. Multiply each entry of one row by some quantity and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation but replace the second row by the new values.
We will use the following notations to describe the row operations stated above:
4. $R_{i} \leftrightarrow R_{j}$: Swap the location of rows i and j.
5. αR_{i} : Multiply row i by the nonzero scalar α.
6. $\alpha R_{i}+R_{j} \rightarrow R_{j}$: Multiply row i by the scalar α and add to row j, so that row j will change but no change in row i.
Two matrices, A, B, of the same size, say $m \times n$, are said to be row-equivalent if and only if A is obtained from B by applying a sequence of row operations on B.

The following type of matrices is needed in 266 order to achieve our main goal and solve a system 267 of linear equations using augmented matrices. 268

A matrix $A, m \times n$, is called in reduced row- 269 echelon form if it meets all of the following 270 conditions: 271

1. If there is a row where every entry is zero, then 272 this row lies below any other row that contains 273 a nonzero entry.

274

2. The leftmost nonzero entry of a row is equal 275 to 1.

276
3. The leftmost nonzero entry of a row is the only 277 nonzero entry in its column. 278
4. Consider any two different leftmost nonzero 279 entries, one located in row i, column j and 280 the other located in row s, column t. If $s>i, 281$ then $t>j$. 282 A matrix $A, m \times n$, is said to be in row-echelon 283 form if and only if A satisfies conditions (1), (2), 284 and (4) as above.
Example 2 The matrix $A=\left[\begin{array}{lllll}0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ is in 286
redûced row-echelon form. 287
The matrix $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$ is in row-echelon 288
form but not in reduced row-echelon form. 289 The matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is neither in row-echelon 290 form nor in reduced row-echelon form.

291
Theorem 4 Let A be a matrix, $m \times n$. Then $A 292$ is row-equivalent to a unique matrix, $m \times n$, in 293 reduced row-echelon form.

Consider the system in (1). The augmented matrix of the system is

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & \mid b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & \mid b_{2} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

where $a_{1 i}, a_{2 i}, \ldots, a_{m i}$ are the coefficients of 295 the variable x_{i} in the system (1). In view of 296 Theorem 3, we have the following result. 297

Theorem 5 Let A be the augmented matrix of a given system of linear equations and let E be the reduced row-echelon form of A. Then the solution set of the given system is equal to the solution set of the system that has E as its augmented matrix.

Theorem 6 Let A be the augmented matrix of a given system of linear equations and let E be the reduced row-echelon form of A. Then the given system is consistent if and only if none of the equations that correspond to the matrix E has a form zero $=$ nonzero .

Suppose A is the augmented matrix of a consistent system of linear equations and let E be the reduced row-echelon form of A. Suppose j is the index of a column of B that contains the leading 1 for some row. Then the variable x_{j} is said to be dependent or leading. A variable that is not dependent is called independent or free. If x_{k} is an independent variable, we understand that x_{k} can take any real (complex) value.

Consider the following system:

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}+2 x_{4}=1 \\
-2 x_{1}-4 x_{2}+3 x_{3}-4 x_{4}=2 \\
-x_{1}-2 x_{2}+x_{3}-2 x_{4}=-1
\end{gathered}
$$

Whose augmented matrix is equivalent to the matrix

$$
E=\left[\begin{array}{llll|l}
1 & 2 & 0 & 2 & \mid \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 0 & \mid 0
\end{array}\right]
$$

in reduced row-echelon form, which corresponds to the system:

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{4}=5 \\
x_{3}=4 \\
0=0
\end{gathered}
$$

No equation of this system has a form zero $=$ nonzero. Therefore, the original system is consistent. The dependent (leading) variables are x_{1} and x_{3}. The independent (free) variables are x_{2} and x_{4}. Thus, x_{2}, x_{4} can take any real (complex) values. We write the leading variables in terms of the dependent variables. Thus, we have:

$$
\begin{gathered}
x_{1}=5-2 x_{2}-2 x_{4} \\
x_{3}=4 \\
x_{2}, x_{4} \in R(C)
\end{gathered}
$$

Hence, the solution set of the original sys- 336 tem is 337
$F=\left\{\left(5-2 x_{2}-2 x_{4}, x_{2}, 4, x_{4}\right) \mid x_{2}, x_{4} \in R(C)\right\} .{ }_{338}$

Matrix Operations

339

Let $M_{n \times m}$ be the set of all $n \times m$ matrices with 340 entries from $R(C)$ for some positive integers 341 n, m. If $A \in M_{n \times m}$, then $a_{i j}$ denotes the entry 342 in the matrix A that is located in the i th row and ${ }_{343}$ the j th column of A. If $A \in M_{n \times m}$, then we say 344 that $\operatorname{size}(A)=n \times m$.

Theorem 7 (Addition, subtraction, and multi- 346 plication by a scalar) Let A, B be two matrices 347 and $\alpha \in R(C)$. Then $A+B$ and $A-B$ is defined 348 if and only if $\operatorname{size}(A)=\operatorname{size}(B)$. Furthermore, 349 suppose that size $(A)=\operatorname{size}(B), A+B=C, 350$ $A-B=D$, and $\alpha A=F$. Then $c_{i j}=a_{i j}+b_{i j}, 351$ $d_{i j}=a_{i j}-b_{i j}$, and $f_{i j}=\alpha a_{i j} . \quad 352$
Example 3 Let $A=\left[\begin{array}{ccc}3 & 4 & 1 \\ -1 & 0 & 2\end{array}\right], B={ }_{353}$ $\left[\begin{array}{ccc}-2 & 0 & 1 \\ 4 & -2 & 1\end{array}\right]$, and $\alpha=-2$. Then $A+B=354$ $C=\left[\begin{array}{ccc}1 & 4 & 2 \\ 3 & -2 & 3\end{array}\right], A-B=D=\left[\begin{array}{ccc}5 & 4 & 0 \\ -5 & 2 & 1\end{array}\right], 355$ and $-2 A=\left[\begin{array}{ccc}-6 & -8 & -2 \\ 2 & 0 & -4\end{array}\right]$.
For a matrix $A \in M_{n \times m}$, let $A_{r_{i}}$ denote the i th ${ }_{357}$ row of A and let $A_{c_{i}}$ denote the i th column of A. ${ }_{358}$

Theorem 8 (Matrix multiplication) Let A be 359 an $m \times n$ matrix and B be a $v \times k$ matrix. Then the 360 matrix multiplication $A B$ is defined if and only if 361 $n=v$. Furthermore, suppose that $n=v$ and let 362 $A B=D$. Then the following statements hold: ${ }_{363}$ 1. $\operatorname{Size}(D)=m \times k$ and $d_{i j}=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+364$ $\cdots+a_{i, n} b_{n, j}$ [dot product]. 365
2. $D_{c_{i}}=b_{1 i} A_{c_{1}}+b_{2 i} A_{c_{2}}+\cdots+b_{n i} A_{c_{n}}$ [linear 366 combination of the columns of $A]$. 367
3. $D_{r_{i}}=a_{i 1} B_{r_{1}}+a_{i 2} B_{r_{2}}+\cdots+a_{i n} B_{r_{n}}$ [linear combination of the rows of $B]$.

Example 4 Let $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 6\end{array}\right]$ and $B=$ $\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 5 & 2 \\ -3 & 7 & -4\end{array}\right]$. Then $A B$ is defined by
Theorem 8. Let $A B=D$. Then

1. $\operatorname{Size}(D)=2 \times 3$ and $d_{23}=(-3)(3)+(0)(2)+$ (6) (-4).
2. The second column of D is $D_{c_{2}}=-2\left[\begin{array}{c}1 \\ -3\end{array}\right]+$ $5\left[\begin{array}{l}2 \\ 0\end{array}\right]+7\left[\begin{array}{l}5 \\ 6\end{array}\right]$.
3. The second row of D is $D_{r_{2}}=-3\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]+$ $0\left[\begin{array}{lll}0 & 5 & 2\end{array}\right]+6\left[\begin{array}{lll}-3 & 7 & -4\end{array}\right]$.
Note that $B A$ is undefined by Theorem 8 . In fact, it is possible that for some matrices A, B that $A B$ and $B A$ are defined but $A B \neq B A$.

Theorem 9 Let i be a positive integer and A be a matrix. Then $A^{i}=A \times A \times \cdots \times A$ (itimes) is defined if and only if A is a square matrix, i.e., $A \in M_{n \times n}$ for some positive integer n.

Theorem 10 1. Let $\alpha, \beta \in R(C), A, B \in$ $M_{n \times m}$ and let $C \in M_{m \times k}$. Then $(\alpha A+$ $\beta B) C=\alpha A C+\beta B C$.
2. Let $\alpha, \beta \in R(C), A, B \in M_{n \times m}$ and let $C \in$ $M_{k \times n}$. Then $C(\alpha A+\beta B) C=\alpha C A+\beta C B$.
3. Let $A \in M_{n \times m}, B \in M_{m \times k}$, and $C \in M_{k \times i}$. Then $A B C=(A B) C=A(B C)$.

Theorem 11 (Matrix-form of a system of linear equations) Consider the system in (1). Let $C=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$, and $B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$. Then (in view of Theorem $8(2)$), the
matrix-form of the system in (1) is $C X=B$, where C is called the coefficient matrix of the system, X is called the variables-column of the system, and B is called the constant column of the system.

Theorem 12 Let $C X=B$ be the matrix-form of 402 a given system of linear equations with m equa- 403 tions and n variables (hence, size $(C)=m \times n, 404$ $\operatorname{size}(X)=n \times 1$, and $\operatorname{size}(B)=m \times 1)$. Then the 405 given system is consistent if and only if there are 406 some real (complex) numbers, $r_{1}, r_{2}, \ldots, r_{n}$, such 407 that $B=r_{1} C_{c_{1}}+r_{2} C_{c_{2}}+\cdots+r_{n} C_{c_{n}}$, i.e., B is 408 a linear combination of the columns of C. 409

Example 5 Consider the system: 410

$$
\begin{array}{cl}
x_{1}+2 x_{3}-x_{3}=-1 & 411 \\
& 4 x_{1}+5 x_{2}+2 x_{3}=7 \\
-x_{1}+2 x_{2}-6 x_{3}=-13 & \begin{array}{l}
412 \\
414 \\
415
\end{array}
\end{array}
$$

Then $C=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 5 & 2 \\ -1 & 2 & -6\end{array}\right]$ is the coefficient 416 matrix, $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is the variables-column, and 417 $B=\left[\begin{array}{c}-1 \\ 7 \\ -13\end{array}\right]$ is the constant column. Thus, the 418 matrix-form of the system is $C X=B$. 419

$$
\text { Since } B=1\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]+0\left[\begin{array}{l}
2 \\
5 \\
2
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
2 \\
-6
\end{array}\right]{ }_{420}
$$ is a linear combination of the columns of $C, 421$ we conclude that the system is consistent by 422 Theorem 12, and the point $(1,0,2)$ is in the 423 solution set of the system (i.e., $x_{1}=1, x_{2}=0,424$ $x_{3}=2$ is a solution to the system).

Let $n \geq 1$ be a positive integer. Then I_{n} is an 426 $n \times n$ matrix where $i_{11}=i_{22}=\cdots=i_{n n}=1427$ and $i_{k j}=0$ if $k \neq j$. We call I_{n} an identity ${ }_{428}$ matrix. Note that if $n=1$, then $I_{n}=1$. 429
Theorem 13 Let A be a $k \times m$ matrix. Then 430 $A I_{m}=A$ and $I_{k} A=A$.

Theorem 14 (Row operations and matrix mul- 432 tiplication) Let A be an $n \times m$ matrix and let 433 W be a row operation. Assume that we applied 434 W exactly once on A and we obtained the matrix 435 B, also assume we applied W on the matrix $I_{n}{ }_{436}$ exactly once and we obtained the matrix E. Then 437 $E A=B$.

A matrix that is obtained from I_{n} by applying one row operation on I_{n} exactly once is called an elementary matrix.

Example 6 Let A be a 2×5 matrix and assume we applied a sequence of row operations on A, and we obtained the matrix B as below:

Since we performed exactly three row operations on A, we should be able to find three elementary matrices, E_{1}, E_{2}, E_{3}, such that $E_{3} E_{2} E_{1} A=B$.

$$
\begin{aligned}
& I_{2} \overline{R_{1} \leftrightarrow R_{2}} \quad E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=E_{1} \\
& I_{2} \overline{2 R_{2}+R_{1} \rightarrow R_{1}} \quad E_{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
& I_{2} \quad \overline{3 R_{1}} \quad E_{3}=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] \\
& \text { Hence, } E_{3} E_{2} E_{1} A=B .
\end{aligned}
$$

Let A be a square matrix (i.e., $A \in M_{n \times n}$). We say A is nonsingular or invertible if there exists a matrix denoted by A^{-1} such that $A A^{-1}=$ $A^{-1} A=I_{n}$. If we cannot find a matrix B such that $A B=B A=I_{n}$, then we say A is singular or non-invertible.

Theorem 15 Let $A \in M_{n \times n}$ and suppose that A is invertible. Then A^{-1} is unique. Furthermore, suppose that $B A=I_{n}$ for some matrix B. Then $B A=A B=I_{n}$, and hence $B=A^{-1}$.

Theorem 16 Let $A \in M_{n \times n}$ and suppose that B is the reduced row echelon form of A. Then A is invertible if and only if $B=I_{n}$.

Theorem 17 (Calculating A^{-1}) Let $A \in M_{n \times m}$ and suppose that we joint I_{n} to the matrix A, and we formed a new matrix denoted by $\left[A \mid I_{n}\right]$. Then

1. Suppose that we applied a sequence of row operations on the matrix $\left[A \mid I_{n}\right]$, and we obtained the matrix $[D \mid F]$ (i.e., A is
row-equivalent to D and I_{n} is row-equivalent 475 to F). Then $F A=D . \quad 476$
2. Suppose A is a square matrix (i.e., $n=m$), and 477 we applied a sequence of row operations on 478 the matrix $\left[A \mid I_{n}\right]$, and we obtained the matrix 479 $[D \mid F]$ where D is the reduced row-echelon 480 form of A. If $D=I_{n}$, then $F=A^{-1}$.
Example 7 Let $A=\left[\begin{array}{ll}4 & 3 \\ 1 & 1\end{array}\right]$. We use 482 Theorem 29(2) in order to find A^{-1}. We form 483 the matrix $\left[A \mid I_{2}\right]$ and we apply a sequence of 484 row operations on the matrix $\left[A \mid I_{2}\right]$ in order 485 to obtain the matrix $[D \mid F]$ where D is the 486 reduced row operation form of A. We see that 487 $D=I_{2}$ and $F=\left[\begin{array}{cc}1 & -3 \\ -1 & 4\end{array}\right]$. Thus, $F=A^{-1}$ by 488 Theorem 29(2).

Theorem 18 1. Let $A, B \in M_{n \times n}$ be invertible 490 matrices. Then $A B$ is invertible and 491 $(A B)^{-1}=B^{-1} A^{-1}$. 492
2. Let $A \in M_{n \times n}$ be invertible and $\alpha \in R(C) 493$ such that $\alpha \neq 0$. Then αA is invertible and 494 $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$.

495
Theorem 19 Let $C X=B$ be the matrix-form 496 of a given system of linear equations with $n 497$ equations and n variables. Then the system has 498 a unique solution if and only if C is invertible. 499 Furthermore, if C^{-1} is the inverse of C, then 500 $X=C^{-1} B$.

Example 8 Consider the following system in 502 matrix-form $C X=B$, where $C=\left[\begin{array}{ll}4 & 3 \\ 1 & 1\end{array}\right], 503$ $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $B=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Since C is invertible 504 by Example 7, we have $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=C^{-1} B=505$ $\left[\begin{array}{cc}1 & -3 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Thus, $\{(-1,2)\}$ is the 506 solution set of the system.

Let A be an $n \times m$ matrix. The transpose of $\mathbf{A} 508$ is denoted by A^{T} where $a_{i j}^{T}=a_{j i}$, and hence 509 $\operatorname{size}\left(A^{T}\right)=m \times n$.

510
A square matrix $A, n \times n$, is called symmetric 511 if $A^{T}=A$, and it is called skew-symmetric if 512 $A^{T}=-A$. 513 542

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{i+1} a_{i 1} \operatorname{det}\left(A_{i 1}\right) \\
& +(-1)^{i+2} a_{i 2} \operatorname{det}\left(A_{i 2}\right) \\
& +\cdots+(-1)^{i+n} a_{i n} \operatorname{det}\left(A_{i n}\right)
\end{aligned}
$$

2. Assume that we selected the j th column of A.

Theorem 20 1. Assume that $A, B \in M_{n \times m}$ and $\alpha, \beta \in R(C)$. Then $(\alpha A+\beta B)^{T}=\alpha A^{T}+$ βB^{T}.
2. Assume that $A B$ is defined for some matrices A, B. Then $(A B)^{T}=B^{T} A^{T}$.
3. Assume A is a square matrix and $\alpha \in R(C)$. Then $\alpha\left(A+A^{T}\right)$ is symmetric and $\alpha\left(A-A^{T}\right)$ is skew-symmetric.
4. Assume A is a square matrix, then $A=$ $\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$, i.e., A is a sum of a symmetric matrix and a skew-symmetric matrix.

Theorem 21 Let $A \in M_{n \times n}$. Then A is invertible if and only if A^{T} is invertible. Furthermore, if A is invertible, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Determinant and Cramer Rule

Let $A \in M_{n \times n}(n \geq 2)$. Then $A_{i j}$ denotes the matrix obtained from A after deleting the i th row and the j th column of A. Some authors called such matrix a minor of A. Note that $\operatorname{size}\left(A_{i j}\right)=$ $(n-1) \times(n-1)$. If B is a square matrix, then $\operatorname{det}(B)$ or $|B|$ denotes the determinant of B.

Theorem 22 Let A be a 2×2 matrix, say $A=$ $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$.
Theorem 23 (Calculating $\operatorname{det}(A))$ Let $A \in$ $M_{n \times n}$. Then

1. Assume that we selected the ith row of A. Then

Then

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{j+1} a_{1 j} \operatorname{det}\left(A_{1 j}\right) \\
& +(-1)^{j+2} a_{2 j} \operatorname{det}\left(A_{2 j}\right) \\
& +\cdots+(-1)^{j+n} a_{n j} \operatorname{det}\left(A_{n j}\right)
\end{aligned}
$$

3. $\operatorname{det}(A)$ is unique and it does not rely on the 543 row or the column we select, and thus, it is 544 always recommended that we select a row or 545 a column of A that has more zeros in order to 546 calculate $\operatorname{det}(A)$.

547
Example 9 Let $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & 5 & 0 \\ 3 & 2 & 0\end{array}\right]$. To find $\operatorname{det}(A)$, 548 we observe that the 3 rd column of A has more 549 zeros. Hence, by Theorem 23(2), we have 550

$$
\operatorname{det}(A)=(-1)^{3+1} 3 \operatorname{det}\left[\begin{array}{rr}
-4 & 5 \\
3 & 2
\end{array}\right]=-69 \quad 551
$$

Let $A \in M_{n \times n}$. If $a_{i j}=0$ whenever $i>j, 552$ then A is called an upper triangular matrix. If 553 $a_{i j}=0$ whenever $i<j$, then A is called a lower 554 triangular matrix. If $a_{i j}=0$ whenever $i \neq j, 555$ then A is called a diagonal matrix. If A is upper 556 triangular or lower triangular or diagonal, then $A 557$ is said to be a triangular matrix. 558

Theorem 24 Let $A \in M_{n \times n}$ be a triangular 559 matrix. Then $\operatorname{det}(A)=a_{11} a_{22} \cdots . a_{n-1 n-1} a_{n n} . \quad 560$

Theorem 25 1. Let $A \in M_{n \times n}$ be an invertible 561 upper triangular matrix. Then A^{-1} is an upper 562 triangular matrix. 563
2. Let $A \in M_{n \times n}$ be an invertible lower trian- 564 gular matrix. Then A^{-1} is a lower triangular 565 matrix.

566
3. Let $A \in M_{n \times n}$ be an invertible diagonal 567 matrix. Then A^{-1} is a diagonal matrix. 568

Theorem 26 Let $A \in M_{n \times n}$. If one of the 569 following statements hold, then $\operatorname{det}(A)=0 . \quad 570$

1. Two rows or two columns of A are identical. 571
2. One row of A is a multiple of another row of 572 A, or one column of A is a multiple of another 573 column of A.

574
3. One row or one column of A is entirely zeros. 575

Theorem 27 (The effect of row operations on 576 determinant) Let $A \in M_{n \times n}$. Then, 577

1. Suppose that we applied row operation num- 578 ber one exactly once on $A: A \quad R_{i} \leftrightarrow R_{j} \quad$ B. 579 Then $\operatorname{det}(B)=-\operatorname{det}(A) . \quad 580$
2. Suppose that we applied row operation number two exactly once on $A: A \overline{\alpha R_{i}} \quad B$. Then $\operatorname{det}(B)=\alpha \operatorname{det}(A)$.
3. Suppose that we applied row operation number three exactly once on A : $A \overline{\alpha R_{i}+R_{j} \rightarrow R_{j}} \quad B$. Then $\operatorname{det}(B)=$ $\operatorname{det}(A)$.

Theorem 28 (Most used method to find a determinant) Let $A \in M_{n \times n}$. It is always recommended that we apply row operations on A in
order to transform A to a triangular matrix, then 591 we use Theorem 27 and Theorem 24 to calculate 592 $\operatorname{det}(A)$. 593

Example 10 Let $A=\left[\begin{array}{cccc}2 & 1 & 2 & 1 \\ -2 & 1 & 2 & 6 \\ 4 & 2 & 5 & 1 \\ -2 & -1 & -2 & 3\end{array}\right]$. We use 594
Theorem 28 in order to calculate $\operatorname{det}(A)$.
595

$$
A \overline{R_{1}+R_{2} \rightarrow R_{2},-2 R_{1}+R_{3} \rightarrow R_{3}, R_{1}+R_{4} \rightarrow R_{4}} B=\left[\begin{array}{cccc}
2 & 1 & 2 & 1 \\
0 & 2 & 4 & 7 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Since B is obtained from A by applying row operation number three exactly three times on A and row operation number three has no effect on $\operatorname{det}(A)$, we conclude that $\operatorname{det}(A)=\operatorname{det}(B)$ by Theorem 27(3). Hence, $\operatorname{det}(A)=\operatorname{det}(B)=8$ by Theorem 24. Example 11 Let $A \in M_{4 \times 4}$ and suppose that $A \quad \overline{R_{1} \leftrightarrow R_{2}} \quad B \quad \overline{2 R_{3}} \quad C=\left[\begin{array}{cccc}2 & 2 & 2 & 2 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 4\end{array}\right]$. By Theorem 24, $\operatorname{det}(C)=16$. By Theorem 27(1), $16=\operatorname{det}(C)=2 \operatorname{det}(B)$, and hence $\operatorname{det}(B)=8$. By Theorem $27(2), 8=\operatorname{det}(B)=$ $-\operatorname{det}(A)$, and hence $\operatorname{det}(A)=-8$.

Theorem 29 (Characterizing invertible matrices in terms of determinant) Let $A \in M_{n \times n}$. Then A is invertible (nonsingular) if and only if $\operatorname{det}(A) \neq 0$.

Theorem 30 (Characterizing consistent and inconsistent systems of linear equations in terms of determinant) Let $C X=B$ be the matrix-form of a system of linear equations with n equations and n variables (i.e., size $(C)=$ $n \times n$). Then:

1. The system has a unique solution if and only if $\operatorname{det}(C) \neq 0$.
2. Assume that the given system is consistent. 620 Then the system has infinitely many solutions 621 if and only if $\operatorname{det}(C)=0$.

622
Theorem 31 . Let $A, B \in M_{n \times n}$. Then 623 $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, and it is not 624 always true that $\operatorname{det}(A+B)=\operatorname{det}(A)+{ }_{625}$ $\operatorname{det}(B)$. 626
2. Let $A \in M_{n \times n}$. Then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$. $\quad 627$
3. Let $A \in M_{n \times n}$ be an invertible matrix. Then 628 $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
4. Let $A \in M_{n \times n}$ and $\alpha \in R(C)$. Then 630 $\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)$.
Theorem 32 (Adjoint method: calculating $A^{-1} 632$ using determinant) Let $A \in M_{n \times n}$ be an invert- 633 ible matrix. Then the (i, j)-entry of $A^{-1}=\quad{ }_{634}$

$$
\begin{equation*}
a_{i j}^{-1}=\frac{(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)}{\operatorname{det}(A)} \tag{635}
\end{equation*}
$$

(Recall: $A_{j i}$ is the matrix obtained from A after ${ }^{636}$ deleting the j th row and ith column of A.) 637 Example 12 Let $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1\end{array}\right]$. Then $\operatorname{det}(A)=638$ $a_{11} a_{22} a_{33}=(3)(2)(1)=6$ by Theorem 24. ${ }^{639}$ Hence, A is invertible by Theorem 29. Thus, 640 the $(2,3)$-entry of $A^{-1}=a_{23}^{-1}=\frac{(-1)^{5} \operatorname{det}\left(A_{32}\right)}{\operatorname{det}(A)} 641$ 667 668 669 670 671 672
${ }_{659} C_{1}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & 2 \\ -2 & -4 & 2\end{array}\right], C_{2}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 2 & 2 \\ -2 & -2 & 2\end{array}\right], C_{3}=$ $660\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 2 \\ -2 & -4 & -2\end{array}\right]$. Thus, by Theorem 33 we have: $61 x_{1}=\operatorname{det}\left(C_{1}\right) / \operatorname{det}(C)=-12 / 12=1, x_{2}=$ $\operatorname{det}\left(C_{2}\right) / \operatorname{det}(C)=12 / 12=1$, and $x_{3}=$ $\operatorname{det}\left(C_{3}\right) / \operatorname{det}(C)=0 / 12=0$.

Conclusions

65 In this entry, we explicitly explained and stated 666 all major results on basic matrix operations. We
by Theorem 32. Now, $A_{32}=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ and
$\operatorname{det}\left(A_{32}\right)=9$. Thus, $a_{23}^{-1}=\frac{-9}{6}=\frac{-3}{2}$.
Let $C X=B$ be the matrix-form of a system of linear equations with n equations and n variables, say $x_{1}, x_{2}, \ldots, x_{n}$. Then C_{i} indicates the matrix obtained from C after replacing the i th column of C by the constant column B.

Theorem 33 (Cramer rule: solving $n \times n$ system of linear equations) Let $C X=B$ be the matrix-form of a system of linear equations with n equations and n variables, say $x_{1}, x_{2}, \ldots, x_{n}$ and suppose that $\operatorname{det}(C) \neq 0$ (and hence, the system has a unique solution by Theorem 30). Then $x_{i}=\frac{\operatorname{det}\left(C_{i}\right)}{\operatorname{det}(C)}$.
Example 13 Consider the system in the matrixillustrated all different methods used in solving system of linear equations using matrices. The concept of elementary matrices and their strong relation with row operations is explained in details. Major results on determinant and its use are illustrated clearly in this article.

Cross-References
 673

- Eigenvalues, Singular Value Decomposition 674
- Least Squares
- Matrix Analysis of Networks 675
- Matrix Decomposition 677

References

Axler S (1997) Linear algebra done right. Springer, Berlin 679 Beezer RA (2012) A first course in linear algebra. Con- 680 gruent Press, Tacoma
Bernstein DS (2005) Matrix mathematics: theory, facts, 682 and formulas with application to linear systems theory. 683 Princeton University Press, Princeton

684
Blyth TS, Robertson EF (2002) Basic linear algebra. 685 Springer, Berlin

686
Kaw A (2011) Introduction to matrix algebra, 2nd edn. 687 University of South Florida, Tampa
Lang S (1986) Introduction to linear algebra. Springer, 689 Berlin

690
Lay DC (2003) Linear algebra and its applications, 3rd 691 edn. Pearson, Toronto 692
Robbiano L (2011) Linear algebra for everyone. Springer, 693 Berlin
Shores TS (2007) Applied linear algebra and matrix anal- 695 ysis. Springer, Berlin 696

